6.2 Trigonometric Functions: Unit Circle Approach/15: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:




\sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac\5 sqrt{21}{21}\\[2ex]
\sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{2\sqrt{21}}{21}
\cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex]  
  \cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex]  
\tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex]
\tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex]



Revision as of 19:20, 30 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} -\frac{2}{5},\frac\sqrt{21}{5} \sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{2\sqrt{21}}{21} \cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex] \tan{(t)} &= -\frac\sqrt{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex] \end{align} }


\end{align} </math>