5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Undo revision 2916 by Kattieh70488@students.laalliance.org (talk))
Tag: Undo
No edit summary
Line 1: Line 1:
<math>\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx </math>
<math>
<math>
\begin{align}
\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx =  
\int\left({}^{}\frac{x^3-2\sqrt{x}}{x}\right)dx &= \int\left({}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}\right)dx
</math>
 
<math>
&= \left x^2-2x^\frac{-1}{2}\right)dx =  
\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C
 
&= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &= \frac{1}{3}x^3-4\sqrt{x}+ C
 
 
\end{align}
</math>
</math>
<math>

Revision as of 19:19, 30 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{}^{}{\frac {x^{3}-2{\sqrt {x}}}{x}}dx}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx = } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C } <math>