5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions
(Undo revision 2916 by Kattieh70488@students.laalliance.org (talk)) Tag: Undo |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx </math> | |||
<math> | <math> | ||
\ | \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx = | ||
</math> | |||
<math> | |||
\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C | |||
</math> | </math> | ||
<math> | |||
Revision as of 19:19, 30 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{}^{}{\frac {x^{3}-2{\sqrt {x}}}{x}}dx}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx = } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C } <math>