5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 9: | Line 9: | ||
&= 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 \\[2ex] | &= 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 \\[2ex] | ||
&= \left(-\frac{1}{2} - 1\right) + \left( | &= \left(-\frac{1}{2} - 1\right) + \left(2 - 4\right) \\[2ex] | ||
&=-\frac{1}{2}-1-2 = -\frac{1}{2}-3 | |||
&= -3.5 | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 19:12, 30 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int \limits _{-1}^{2}(x-2|x|)dx=\int \limits _{-1}^{0}(x-2(-x))dx+\int \limits _{0}^{2}(x-2(x))dx\\[2ex]&=\left({\frac {1}{2}}{x^{2}}+x^{2}\right){\bigg |}_{-1}^{0}+\left({\frac {1}{2}}{x^{2}}-x^{2}\right){\bigg |}_{0}^{2}\\[2ex]&=0-\left({\frac {1}{2}}(-1)^{2}+(-1)^{2}\right)+\left({\frac {1}{2}}(2)^{2}-(2)^{2}\right)-0\\[2ex]&=\left(-{\frac {1}{2}}-1\right)+\left(2-4\right)\\[2ex]&=-{\frac {1}{2}}-1-2=-{\frac {1}{2}}-3&=-3.5\end{aligned}}}