5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
&= 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 \\[2ex]
&= 0- \left(\frac{1}{2} (-1)^2 + (-1)^2 \right) + \left(\frac{1}{2} (2)^2 - (2)^2 \right) - 0 \\[2ex]


&= \left(-\frac{1}{2} - 1\right) + \left(\frac{1}{2} 4) - 4\right) \\[2ex]
&= \left(-\frac{1}{2} - 1\right) + \left(2 - 4\right) \\[2ex]
 
&=-\frac{1}{2}-1-2 = -\frac{1}{2}-3
 
&= -3.5
 
\end{align}
\end{align}
</math>
</math>

Revision as of 19:12, 30 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int \limits _{-1}^{2}(x-2|x|)dx=\int \limits _{-1}^{0}(x-2(-x))dx+\int \limits _{0}^{2}(x-2(x))dx\\[2ex]&=\left({\frac {1}{2}}{x^{2}}+x^{2}\right){\bigg |}_{-1}^{0}+\left({\frac {1}{2}}{x^{2}}-x^{2}\right){\bigg |}_{0}^{2}\\[2ex]&=0-\left({\frac {1}{2}}(-1)^{2}+(-1)^{2}\right)+\left({\frac {1}{2}}(2)^{2}-(2)^{2}\right)-0\\[2ex]&=\left(-{\frac {1}{2}}-1\right)+\left(2-4\right)\\[2ex]&=-{\frac {1}{2}}-1-2=-{\frac {1}{2}}-3&=-3.5\end{aligned}}}