5.4 Indefinite Integrals and the Net Change Theorem/43: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
\int\limits_{-1}^{2}(x-2|x|)dx | \int\limits_{-1}^{2}(x-2|x|)dx | ||
=\int\limits_{-2}^{0}(x-2(-x))dx + \int\limits_{0}^{2}(x-2(x))dx | |||
</math> | </math> | ||
Revision as of 16:04, 30 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int \limits _{-1}^{2}(x-2|x|)dx=\int \limits _{-2}^{0}(x-2(-x))dx+\int \limits _{0}^{2}(x-2(x))dx}