6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
\sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{2}{1}=2\\[2ex]
\sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{2}{1}=2\\[2ex]


\cos{\left(\frac{-14\pi}{3}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  
\cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  


\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3}

Revision as of 16:03, 29 August 2022



Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin {\left({\frac {-14\pi }{3}}\right)}&=-{\frac {\sqrt {3}}{2}}&\csc {\left({\frac {-14\pi }{3}}\right)}&={\frac {2}{1}}=2\\[2ex]\cos {\left({\frac {-14\pi }{3}}\right)}&=-{\frac {1}{2}}&\sec {\left({\frac {-14\pi }{3}}\right)}&={\frac {2}{-{\sqrt {3}}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}=-{\frac {2{\sqrt {3}}}{3}}\\[2ex]\tan {\left({\frac {-14\pi }{3}}\right)}&={\frac {\frac {1}{2}}{-{\frac {\sqrt {3}}{2}}}}=\left({\frac {1}{2}}\right)\left(-{\frac {2}{\sqrt {3}}}\right)=-{\frac {1}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}=-{\frac {\sqrt {3}}{3}}&\cot {\left({\frac {-14\pi }{3}}\right)}&=-{\frac {\sqrt {3}}{1}}=-{\sqrt {3}}\\[2ex]\end{aligned}}}