5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
17)<math>\int_{}^{}1+tan^2xdx</math> = | 17)<math>\int_{}^{}1+tan^2xdx</math> = | ||
<math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> = | <math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> = | ||
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> <math>\cos^2x+sin^2x=1</math> thus, | <math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> <math>\cos^2x+sin^2x=1</math> thus, | ||
Revision as of 07:07, 29 August 2022
17) =
= Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{}^{}{\frac {cos^{2}x+sin^{2}x}{cos^{2}x}}dx} Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \cos ^{2}x+sin^{2}x=1} thus, Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{}^{}{\frac {1}{cos^{2}x}}dx} =
1
3
5
7
8
9
10
11
13
15
17
19
20
21
23
25
27
28
29
31
33
35
37
39
41
53