5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
17)<math>\int_{}^{}1+tan^2xdx</math> = | 17)<math>\int_{}^{}1+tan^2xdx</math> = <math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> = | ||
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> =<math>\cos^2x+sin^2x=1</math> thus, | <math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math> =<math>\cos^2x+sin^2x=1</math> thus, | ||
<math>\int_{}^{}\frac{1}{cos^2x}dx</math> | <math>\int_{}^{}\frac{1}{cos^2x}dx</math> = <math>\int_{}^{}sec^2xdx | ||
Revision as of 07:05, 29 August 2022
17)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}1+tan^2xdx} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}1+\frac{sin^2x}{cos^2x}dx} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx} =Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cos^2x+sin^2x=1} thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\frac{1}{cos^2x}dx} = <math>\int_{}^{}sec^2xdx
1
3
5
7
8
9
10
11
13
15
17
19
20
21
23
25
27
28
29
31
33
35
37
39
41
53