5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
17)<math>\int_{}^{}1+tan^2xdx</math> =
17)<math>\int_{}^{}1+tan^2xdx</math> =
  <math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> =  
  <math>\int_{}^{}1+\frac{sin^2x}{cos^2x}dx</math> =  
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math>  <math>cos^2x+sin^2x=1<math>
<math>\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx</math>  <math>\cos^2x+sin^2x=1</math>





Revision as of 06:46, 29 August 2022

17)Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}1+tan^2xdx} =

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{}^{}1+{\frac {sin^{2}x}{cos^{2}x}}dx}
 = 

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cos^2x+sin^2x=1}


1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53