5.5 The Substitution Rule/54: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 10: Line 10:
du &= 2xdx \\[2ex]
du &= 2xdx \\[2ex]
\frac{1}{2}du &= xdx \\[2ex]
\frac{1}{2}du &= xdx \\[2ex]


\end{align}
\end{align}
</math>
</math>


New upper limit: <math>\pi = (\sqrt{\pi})^2</math><br>
New lower limit: <math>0 = (0)^2</math>


<math>
<math>
\begin{align}
\begin{align}


\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex]  
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex]
 
&= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \frac{1}{2}\left[\sin{(u)}\right]_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\sin{((\pi))} - \frac{1}{2}\sin{((0))} \\[2ex]
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex]
&= 0


\end{align}
\end{align}
</math>
</math>

Latest revision as of 22:50, 28 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=x^2 \\[2ex] du &= 2xdx \\[2ex] \frac{1}{2}du &= xdx \\[2ex] \end{align} }


New upper limit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \pi = (\sqrt{\pi})^2}
New lower limit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 0 = (0)^2}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex] &= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex] &= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex] &= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] &= 0 \end{align} }