6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions
No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
\sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{\cancel2}} \cdot \cancel{2} = \frac{2}{\sqrt{3}} \cdot \sqrt{3} = \frac 2\sqrt{3} \\[2ex] | \sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{\cancel2}} \cdot \cancel{2} = \frac{2}{\sqrt{3}} \cdot \sqrt{3} = \frac {2\sqrt{3}}{3} \\[2ex] | ||
\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= -\frac{{2}}{1} = -2 \\[2ex] | \cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= -\frac{{2}}{1} = -2 \\[2ex] | ||
Revision as of 09:41, 27 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{8\pi}{3}\Rightarrow \left(-\frac{1}{2} ,\frac{\sqrt{3}}{2}\right)}
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin {\left({\frac {8\pi }{3}}\right)}&={\frac {\sqrt {3}}{2}}&\csc {\left({\frac {8\pi }{3}}\right)}&={\frac {1}{\frac {\sqrt {3}}{\cancel {2}}}}\cdot {\cancel {2}}={\frac {2}{\sqrt {3}}}\cdot {\sqrt {3}}={\frac {2{\sqrt {3}}}{3}}\\[2ex]\cos {\left({\frac {8\pi }{3}}\right)}&=-{\frac {1}{2}}&\sec {\left({\frac {8\pi }{3}}\right)}&=-{\frac {2}{1}}=-2\\[2ex]\tan {\left({\frac {8\pi }{3}}\right)}&={\frac {\frac {\sqrt {3}}{\cancel {2}}}{-{\frac {1}{\cancel {2}}}}}\cdot {\cancel {2}}={\frac {\sqrt {3}}{-1}}=-{\sqrt {3}}&\cot {\left({\frac {8\pi }{3}}\right)}&={\frac {-{\frac {1}{\cancel {2}}}}{\frac {\sqrt {3}}{\cancel {2}}}}\cdot {\cancel {2}}={\frac {-1}{\sqrt {3}}}\cdot {\sqrt {3}}={\frac {-{\sqrt {3}}}{3}}\\[2ex]\end{aligned}}}