5.5 The Substitution Rule/54: Difference between revisions
No edit summary |
No edit summary |
||
| Line 19: | Line 19: | ||
\begin{align} | \begin{align} | ||
\ | \int_{0}^{7} \sqrt{4+3x}\,dx \\[2ex] | ||
&= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] | &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] | ||
Revision as of 19:16, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{7} \sqrt{4+3x}\,dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=4+3x \\[2ex] du &= 3\,dx \\[2ex] \frac{1}{3}du &= dx \\[2ex] \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{7} \sqrt{4+3x}\,dx \\[2ex] &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] &= -\cos{(u)} + C \\[2ex] &= -\cos{(\ln{(x)})} + C \end{align} }