5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions
No edit summary |
No edit summary Tag: Manual revert |
||
| Line 2: | Line 2: | ||
<math> | <math> | ||
\int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx | \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx | ||
</math> | </math> | ||
<math> | <math> | ||
\frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C | \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C | ||
</math> | </math> | ||
Revision as of 19:15, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C = \frac{1}{3}x^3-4\sqrt{x}+C }