5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\begin{align}
\begin{align}
\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx &=x^2-2x^\frac-{1}{2}dx &= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &=\frac{1}{3}x^3-4\sqrt{x}+C
\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx  
&= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx &= x^2-2x^\frac{-1}{2}dx  
&= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C  
&= \frac{1}{3}x^3-4\sqrt{x}+C


\end{align}
\end{align}
</math>
</math>

Revision as of 19:11, 26 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx &= x^2-2x^\frac{-1}{2}dx &= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &= \frac{1}{3}x^3-4\sqrt{x}+C \end{align} }