5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\begin{align}
\begin{align}
\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx &=x^2-2x^\frac{-1}{2}dx &= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &=\frac{1}{3}x^3-4\sqrt{x}+C
\int_{}^{}\frac{x^3-2\sqrt{x}}{x}dx &= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx &=x^2-2x^\frac-{1}{2}dx &= \frac{x^3}{3}-\frac{2x^\frac{1}{2}}{\frac{1}{2}}+C &=\frac{1}{3}x^3-4\sqrt{x}+C


\end{align}
\end{align}
</math>
</math>

Revision as of 19:10, 26 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{}^{}{\frac {x^{3}-2{\sqrt {x}}}{x}}dx&=\int _{}^{}{\frac {x^{3}}{x}}-{\frac {2{\sqrt {x}}}{x}}dx&=x^{2}-2x^{\frac {-}{1}}{2}dx&={\frac {x^{3}}{3}}-{\frac {2x^{\frac {1}{2}}}{\frac {1}{2}}}+C&={\frac {1}{3}}x^{3}-4{\sqrt {x}}+C\end{aligned}}}