5.5 The Substitution Rule/30: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
\begin{align}
\begin{align}


\int \frac{\sin{(\ln{(x))}}}{x}dx = \int\frac{1}{x}\sin(\ln{(x)})dx
\int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)}}


\end{align}
\end{align}
</math>
</math>

Revision as of 19:05, 26 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{\sin{(\ln{(x))}}}{x}dx }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &=\ln(x) \\[2ex] du &= \frac{1}{x}dx \\[2ex] \end{align} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{\sin{(\ln{(x))}}}{x}dx &= \int\frac{1}{x}\sin(\ln{(x)})dx = \int\left(\frac{1}{x}dx\right)\sin{(\ln{(x)}} \end{align} }