5.4 Indefinite Integrals and the Net Change Theorem/29: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>\int\limits_{2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy</math><br> | <math>\int\limits_{2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy</math><br> | ||
<math>y^4-y^-2\bigg|_{-2}^{-1}=(1-1)-\left(16-\frac{1}{4}\right)=\frac{-63}{4} | <math>= y^4-y^-2\bigg|_{-2}^{-1}=(1-1)-\left(16-\frac{1}{4}\right)</math><br> | ||
<math>= \frac{-63}{4} | |||
</math> | </math> | ||
Revision as of 18:48, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int\limits_{2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle = y^4-y^-2\bigg|_{-2}^{-1}=(1-1)-\left(16-\frac{1}{4}\right)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle = \frac{-63}{4} }