5.4 Indefinite Integrals and the Net Change Theorem/30: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
&= \left(\frac{y^{-2+1}}{-2+1}+\frac{5y^{4+1}}{4+1}\right)\bigg|_{1}^{2} = \left(\frac{y^{-1}}{-1}+y^5\right)\bigg|_{1}^{2} = \left(-\frac{1}{y}+y^5\right)\bigg|_{1}^{2} \\[2ex]
&= \left(\frac{y^{-2+1}}{-2+1}+\frac{5y^{4+1}}{4+1}\right)\bigg|_{1}^{2} = \left(\frac{y^{-1}}{-1}+y^5\right)\bigg|_{1}^{2} = \left(-\frac{1}{y}+y^5\right)\bigg|_{1}^{2} \\[2ex]


&= \left(-\frac{1}{(2)}+(2)^5\right) - \left(-\frac{1}{(1)}+(1)^5\right)  
&= \left(-\frac{1}{(2)}+(2)^5\right) - \left(-\frac{1}{(1)}+(1)^5\right) \\[2ex]


&= \left(-\frac{1}{2}+32\right)
&= \left(-\frac{1}{2}+32\right)
\end{align}
\end{align}
</math>
</math>

Revision as of 18:15, 26 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{2}{\frac {y+5y^{7}}{y^{3}}}dy&=\int _{1}^{2}\left({\frac {y}{y^{3}}}+{\frac {5y^{7}}{y^{3}}}\right)dy=\int _{1}^{2}(y^{-2}+5y^{4})dy\\[2ex]&=\left({\frac {y^{-2+1}}{-2+1}}+{\frac {5y^{4+1}}{4+1}}\right){\bigg |}_{1}^{2}=\left({\frac {y^{-1}}{-1}}+y^{5}\right){\bigg |}_{1}^{2}=\left(-{\frac {1}{y}}+y^{5}\right){\bigg |}_{1}^{2}\\[2ex]&=\left(-{\frac {1}{(2)}}+(2)^{5}\right)-\left(-{\frac {1}{(1)}}+(1)^{5}\right)\\[2ex]&=\left(-{\frac {1}{2}}+32\right)\end{aligned}}}