5.4 Indefinite Integrals and the Net Change Theorem/6: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
&= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex]
&= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex]


&= \frac{3x^{\frac{4}{3}}}{4}
&= \frac{3x^{\frac{4}{3}}}{4} + \frac{3x^{\frac{5}{3}}}{5} + C
 


\end{align}
\end{align}
</math>
</math>

Revision as of 18:03, 26 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int\left(\sqrt{x^3}+\sqrt[3]{x^2}\right)dx &= \int\left(x^{\frac{1}{3}}+x^{\frac{2}{3}}\right)dx \\[2ex] &= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex] &= \frac{3x^{\frac{4}{3}}}{4} + \frac{3x^{\frac{5}{3}}}{5} + C \end{align} }