5.4 Indefinite Integrals and the Net Change Theorem/6: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
&= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex]
&= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex]


&= 3\frac{x^{\frac{4}{3}}}{4}
&= \frac{3x^{\frac{4}{3}}}{4}


\end{align}
\end{align}
</math>
</math>

Revision as of 18:02, 26 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int \left({\sqrt {x^{3}}}+{\sqrt[{3}]{x^{2}}}\right)dx&=\int \left(x^{\frac {1}{3}}+x^{\frac {2}{3}}\right)dx\\[2ex]&=\left({\frac {x^{{\frac {1}{3}}+1}}{{\frac {1}{3}}+1}}\right)+\left({\frac {x^{{\frac {2}{3}}+1}}{{\frac {2}{3}}+1}}\right)+C\\[2ex]&={\frac {3x^{\frac {4}{3}}}{4}}\end{aligned}}}