5.4 Indefinite Integrals and the Net Change Theorem/6: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
&= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex] | &= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex] | ||
&= | &= \frac{3x^{\frac{4}{3}}}{4} | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 18:02, 26 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int \left({\sqrt {x^{3}}}+{\sqrt[{3}]{x^{2}}}\right)dx&=\int \left(x^{\frac {1}{3}}+x^{\frac {2}{3}}\right)dx\\[2ex]&=\left({\frac {x^{{\frac {1}{3}}+1}}{{\frac {1}{3}}+1}}\right)+\left({\frac {x^{{\frac {2}{3}}+1}}{{\frac {2}{3}}+1}}\right)+C\\[2ex]&={\frac {3x^{\frac {4}{3}}}{4}}\end{aligned}}}