5.4 Indefinite Integrals and the Net Change Theorem/6: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
\int\left(\sqrt{x^3}+\sqrt[3]{x^2}\right)dx &= \int\left(x^{\frac{1}{3}}+x^{\frac{2}{3}}\right)dx \\[2ex] | \int\left(\sqrt{x^3}+\sqrt[3]{x^2}\right)dx &= \int\left(x^{\frac{1}{3}}+x^{\frac{2}{3}}\right)dx \\[2ex] | ||
&= \left(\frac{x^{frac{1}{3}+1}}{\frac{1}{3}+1} \\[2ex] | &= \left(\frac{x^{frac{1}{3}+1}}{\frac{1}{3}+1}\right) \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 18:00, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int\left(\sqrt{x^3}+\sqrt[3]{x^2}\right)dx &= \int\left(x^{\frac{1}{3}}+x^{\frac{2}{3}}\right)dx \\[2ex] &= \left(\frac{x^{frac{1}{3}+1}}{\frac{1}{3}+1}\right) \\[2ex] \end{align} }