6.2 Trigonometric Functions: Unit Circle Approach/78: Difference between revisions
No edit summary |
No edit summary |
||
| Line 11: | Line 11: | ||
\sqrt{169} &= \sqrt{r^2}\\ | \sqrt{169} &= \sqrt{r^2}\\ | ||
13 &= r \\ | 13 &= r \\ | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
<math> \theta \rightarrow x=5, \, y=-12, \, r=13 </math><br> | |||
Revision as of 16:54, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta \rightarrow x=5, \, y=-12, \, r=\,? }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} (5)^2+(-12)^2 &= r^2 \\ 25+144 &= r^2 \\ 169 &= r^2 \\ \sqrt{169} &= \sqrt{r^2}\\ 13 &= r \\ \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta \rightarrow x=5, \, y=-12, \, r=13 }