5.3 The Fundamental Theorem of Calculus/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du</math> | <math>\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du</math> | ||
] | <math>\frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]=3*\frac{1}{x^2}</math> | ||
<math>\left[(3)\frac{(3x)^2-1}{(3x)^2+1}du\right] | |||
Revision as of 15:57, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{2x}^{3x}\frac{u^2-1}{u^2+1}du}
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {d}{dx}}\left[\int _{2x}^{3x}{\frac {u^{2}-1}{u^{2}+1}}du\right]=3*{\frac {1}{x^{2}}}}
<math>\left[(3)\frac{(3x)^2-1}{(3x)^2+1}du\right]