6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions
No edit summary |
No edit summary |
||
| Line 10: | Line 10: | ||
\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(2\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3} | \tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(2\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3} | ||
& \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{1 | & \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2}= -\sqrt{3} \\[2ex] \end{align} </math> | ||
Revision as of 04:01, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{8\pi}{3}\Rightarrow \left(-\frac{1}{2} ,\frac{\sqrt{3}}{2}\right)}
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin {\left({\frac {8\pi }{3}}\right)}&={\frac {\sqrt {3}}{2}}&\csc {\left({\frac {8\pi }{3}}\right)}&={{\frac {2}{\sqrt {3}}}\cdot {\sqrt {3}}}={\frac {2{\sqrt {3}}}{3}}\\[2ex]\cos {\left({\frac {8\pi }{3}}\right)}&=-{\frac {1}{2}}&\sec {\left({\frac {8\pi }{3}}\right)}&=-{\frac {2}{1}}=-2\\[2ex]\tan {\left({\frac {8\pi }{3}}\right)}&={\frac {\frac {\sqrt {3}}{2}}{-{\frac {1}{2}}}}=\left(2\right)={\frac {\sqrt {3}}{-1}}=-{\sqrt {3}}&\cot {\left({\frac {8\pi }{3}}\right)}&=-{\frac {1}{2}}=-{\sqrt {3}}\\[2ex]\end{aligned}}}