6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions
No edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
\sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{2}{1}=2\\[2ex] | \sin{\left(\frac{8\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{8\pi}{3}\right)} &= \frac{2}{1}=2\\[2ex] | ||
\cos{\left(\frac{8\pi}{3}\right)} &= \frac{ | \cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | ||
\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | \tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | ||
& \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} </math> | & \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} </math> | ||
Revision as of 03:44, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{8\pi}{3}\Rightarrow \left(-\frac{1}{2} ,\frac{\sqrt{3}}{2}\right)}
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin {\left({\frac {8\pi }{3}}\right)}&={\frac {\sqrt {3}}{2}}&\csc {\left({\frac {8\pi }{3}}\right)}&={\frac {2}{1}}=2\\[2ex]\cos {\left({\frac {8\pi }{3}}\right)}&=-{\frac {1}{2}}&\sec {\left({\frac {8\pi }{3}}\right)}&={\frac {2}{-{\sqrt {3}}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}=-{\frac {2{\sqrt {3}}}{3}}\\[2ex]\tan {\left({\frac {8\pi }{3}}\right)}&={\frac {\frac {1}{2}}{-{\frac {\sqrt {3}}{2}}}}=\left({\frac {1}{2}}\right)\left(-{\frac {2}{\sqrt {3}}}\right)=-{\frac {1}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}=-{\frac {\sqrt {3}}{3}}&\cot {\left({\frac {8\pi }{3}}\right)}&=-{\frac {\sqrt {3}}{1}}=-{\sqrt {3}}\\[2ex]\end{aligned}}}