6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions
No edit summary |
No edit summary |
||
| Line 8: | Line 8: | ||
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1} = 2\\[2ex] | \cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{2}\cdot\left(-\frac{2}{\sqrt{3}}\right) = -\sqrt{3} | \tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{2}\cdot\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}} | ||
Revision as of 22:29, 25 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin {\left({\frac {5\pi }{6}}\right)}&={\frac {1}{2}}&\csc {\left({\frac {5\pi }{6}}\right)}&=-{\frac {2}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}={\frac {2{\sqrt {3}}}{3}}\\[2ex]\cos {\left({\frac {5\pi }{6}}\right)}&={\frac {-{\sqrt {3}}}{2}}&\sec {\left({\frac {5\pi }{6}}\right)}&={\frac {2}{1}}=2\\[2ex]\tan {\left({\frac {5\pi }{6}}\right)}&={\frac {\frac {1}{2}}{-{\frac {\sqrt {3}}{2}}}}={\frac {1}{2}}\cdot \left(-{\frac {2}{\sqrt {3}}}\right)=-{\frac {1}{\sqrt {3}}}&\cot {\left({\frac {5\pi }{6}}\right)}&=-{\frac {1}{\sqrt {3}}}=-{\frac {1}{\sqrt {3}}}\cdot {\frac {\sqrt {3}}{\sqrt {3}}}={\frac {\sqrt {3}}{3}}\\[2ex]\end{aligned}}}