6.2 Trigonometric Functions: Unit Circle Approach/14: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:


\sin{(t)} &= -\frac{\sqrt{3}}{2} \\[2ex]
\sin{(t)} &= -\frac{\sqrt{3}}{2} \\[2ex]
\cos{(t)} &= \frac{1}{2} \\
\cos{(t)} &= \frac{1}{2} \\[2ex]
\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} \\
\tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} \\


\end{align}
\end{align}
</math>
</math>

Revision as of 21:56, 25 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin{(t)} &= -\frac{\sqrt{3}}{2} \\[2ex] \cos{(t)} &= \frac{1}{2} \\[2ex] \tan{(t)} &= \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} \\ \end{align} }