6.1 Angles and Their Measure/39: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>
<math>


120^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3}
-60^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{-(\cancel{2}\cdot \cancel{2}\cdot \cancel{3}\cdot \cancel{5})}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3}


= \frac{\pi}{3}
= -\frac{\pi}{3}


</math>
</math>

Latest revision as of 21:49, 25 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -60^{\circ }\cdot {\frac {\pi }{180^{\circ }}}={\frac {-({\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {3}}\cdot {\cancel {5}})}{1}}\cdot {\frac {\pi }{{\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {5}}\cdot {\cancel {3}}\cdot 3}}=-{\frac {\pi }{3}}}