6.1 Angles and Their Measure/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
120^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} | 120^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{\cancel{2}\cdot \cancel{2}\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} | ||
= \frac{ | = \frac{pi}{3} | ||
</math> | </math> | ||
Revision as of 21:45, 25 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 120^{\circ }\cdot {\frac {\pi }{180^{\circ }}}={\frac {{\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {3}}\cdot {\cancel {5}}}{1}}\cdot {\frac {\pi }{{\cancel {2}}\cdot {\cancel {2}}\cdot {\cancel {5}}\cdot {\cancel {3}}\cdot 3}}={\frac {pi}{3}}}