6.1 Angles and Their Measure/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | <math> | ||
30^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{\cancel\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot {2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} | 30^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{ \cancel\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot {2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} | ||
= \frac{2\pi}{3} | = \frac{2\pi}{3} | ||
</math> | </math> | ||
Revision as of 21:45, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 30^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{ \cancel\cdot 2\cdot \cancel{3}\cdot \cancel{5}}{1}\cdot\frac{\pi}{\cancel{2}\cdot {2} \cdot \cancel{5} \cdot \cancel{3} \cdot 3} = \frac{2\pi}{3} }