5.3 The Fundamental Theorem of Calculus/13: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]


</math>
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)



Revision as of 20:18, 25 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h(x)=\int_{2}^{1/x}\arctan(t)dt}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[h(x)\right] =\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] } =\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)

=\frac{-\arctan{\frac{1}{x}}</math>

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Therefore, } g'(x)=}