5.3 The Fundamental Theorem of Calculus/13: Difference between revisions
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] | =\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] | ||
</math> | |||
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) | =\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) | ||
Revision as of 20:18, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h(x)=\int_{2}^{1/x}\arctan(t)dt}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[h(x)\right] =\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] } =\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)
=\frac{-\arctan{\frac{1}{x}}</math>
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Therefore, } g'(x)=}