5.3 The Fundamental Theorem of Calculus/13: Difference between revisions
No edit summary Tag: Manual revert |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> <br><br> | <math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> <br><br> | ||
<math>\frac{d}{dx}\left[h(x)\right]=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right]=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right)=\frac{-arctan\frac{1}{x}})</math> <br><br> | <math>\frac{d}{dx}\left[h(x)\right] | ||
=\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] | |||
=\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) | |||
=\frac{-\arctan{\frac{1}{x}})</math> <br><br> | |||
<math>\text{Therefore, } g'(x)=</math> | <math>\text{Therefore, } g'(x)=</math> | ||
Revision as of 20:18, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h(x)=\int_{2}^{1/x}\arctan(t)dt}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[h(x)\right] =\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] =\frac{-1}{x^2}\cdot(\arctan\left(\frac{1}{x}\right))-0\cdot(\arctan\left(2)\right) =\frac{-\arctan{\frac{1}{x}})}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Therefore, } g'(x)=}