5.3 The Fundamental Theorem of Calculus/35: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:




&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9}  
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex]
 
&= \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex]


&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex]
&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex]

Revision as of 19:40, 25 August 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{9}{\frac {1}{2x}}dx&={\frac {1}{2}}\int _{1}^{9}{\frac {1}{x}}dx&={\frac {1}{2}}\ln {|x|}{\bigg |}_{1}^{9}={\frac {1}{2}}\ln {|9|}-{\frac {1}{2}}\ln {|1|}\\[2ex]&=\ln {|9^{\frac {1}{2}}|}-\ln {|1^{\frac {1}{2}}|}=\ln {3}-0=\ln {3}\\[2ex]\end{aligned}}}