5.3 The Fundamental Theorem of Calculus/7: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>g(x)=\int_{1}^{x}\frac{1}{t^3+1}dt</math><br>
<math>g(x)=\int_{1}^{x}\frac{1}{t^3+1}dt</math><br>
<math>\frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_{1}^{x}\frac{1}{t^3+1}dt\right]</math>=(1)\left(\frac{1}{1+x^3}\right)</math>
<math>\frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_{1}^{x}\frac{1}{t^3+1}dt\right]</math>=\(1)\left(\frac{1}{1+x^3}\right)</math>

Revision as of 19:38, 25 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(x)=\int_{1}^{x}\frac{1}{t^3+1}dt}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[g(x)\right]=\frac{d}{dx}\left[\int_{1}^{x}\frac{1}{t^3+1}dt\right]} =\(1)\left(\frac{1}{1+x^3}\right)</math>