5.3 The Fundamental Theorem of Calculus/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
\int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx | \int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx | ||
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} | &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex] | ||
&= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex] | |||
\end {align} | \end {align} | ||
</math> | </math> | ||
Revision as of 19:37, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{9}\frac{1}{2x}dx &= \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \\[2ex] &= \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \\[2ex] \end {align} }