5.3 The Fundamental Theorem of Calculus/35: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx  
\int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx  


&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \ln{|9^{\frac{1}{2}}|}-\ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3}
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3}




\end {align}
\end {align}
</math>
</math>

Revision as of 19:32, 25 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} \ln{|9^{\frac{1}{2}}|} - \ln{|1^{\frac{1}{2}}|} = \ln{3}-0 = \ln{3} \end {align} }