5.3 The Fundamental Theorem of Calculus/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} | &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} | ||
&= \ln{|9^{\frac{1}{2}}|} | &= \ln{|9^{\frac{1}{2}}|}-\ln{|1^{\frac{1}{2}}|} | ||
\end {align} | \end {align} | ||
</math> | </math> | ||
Revision as of 19:30, 25 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{9}\frac{1}{2x}dx = \frac{1}{2}\int_{1}^{9}\frac{1}{x}dx &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} &= \ln{|9^{\frac{1}{2}}|}-\ln{|1^{\frac{1}{2}}|} \end {align} }