5.3 The Fundamental Theorem of Calculus/35: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
&= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} | &= \frac{1}{2}\ln{|x|}\bigg|_{1}^{9} = \frac{1}{2}\ln{|9|}-\frac{1}{2}\ln{|1|} | ||
&= \ln{|9^{\frac{1}{2}}} | &= \ln{|9^{\frac{1}{2}}|} | ||
\end {align} | \end {align} | ||
</math> | </math> | ||
Revision as of 19:29, 25 August 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{9}{\frac {1}{2x}}dx={\frac {1}{2}}\int _{1}^{9}{\frac {1}{x}}dx&={\frac {1}{2}}\ln {|x|}{\bigg |}_{1}^{9}={\frac {1}{2}}\ln {|9|}-{\frac {1}{2}}\ln {|1|}&=\ln {|9^{\frac {1}{2}}|}\end{aligned}}}