5.3 The Fundamental Theorem of Calculus: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
Line 8: Line 8:
: <math>\frac{d}{dx}\left[\int_{a(x)}^{b(x)}f(t)dt\right]=b'(x)\cdot f(b(x))-a'(x)\cdot f(a(x))</math><br><br>
: <math>\frac{d}{dx}\left[\int_{a(x)}^{b(x)}f(t)dt\right]=b'(x)\cdot f(b(x))-a'(x)\cdot f(a(x))</math><br><br>
:2. FTC #2 <br>
:2. FTC #2 <br>
: <math>\int_{a}^{b}f(x)dx=F(b)-F(a)</math><br> Where <math>\frac{d}{dx}\left[F(x)\right]=f(x)</math>. <math>F(x)</math> is called the <b>antiderivative</b> of <math>f(x)</math> <br>
: <math>\int_{a}^{b}f(x)\,dx=F(b)-F(a)</math><br> Where <math>\frac{d}{dx}\left[F(x)\right]=f(x)</math>. <math>F(x)</math> is called the <b>antiderivative</b> of <math>f(x)</math> <br>


==Solutions==
==Solutions==

Revision as of 17:54, 25 August 2022

Lecture

Lecture notes

1. FTC #1
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {d}{dx}}\left[\int _{a(x)}^{b(x)}f(t)dt\right]=b'(x)\cdot f(b(x))-a'(x)\cdot f(a(x))}

2. FTC #2
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{a}^{b}f(x)\,dx=F(b)-F(a)}
Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[F(x)\right]=f(x)} . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F(x)} is called the antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)}

Solutions

Mr. V solutions: 8, 20, 28

1 3 5 7 8 9 10 11 13 15 17 19 20 21 23 25 27 28 29 31 33 35 37 39 41 53