5.4 Indefinite Integrals and the Net Change Theorem/1: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
Tag: Reverted
No edit summary
Tag: Reverted
Line 3: Line 3:
Show that: <math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math>
Show that: <math>\frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}</math>


Let:
<br>
<br>
Let:
<math>\begin{align}
<math>\begin{align}
a &= x^2+1 & b &= a^{1/2} \\[0.6ex]
a &= x^2+1 & b &= a^{1/2} \\[0.6ex]

Revision as of 17:17, 25 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int\frac{x}{\sqrt{x^2+1}}dx=\sqrt{x^2+1}+c}

Show that: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left[(x^2+1)^\frac{1}{2}+c\right]= \frac{x}{\sqrt{x^2+1}}}

Let:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} a &= x^2+1 & b &= a^{1/2} \\[0.6ex] \frac{da}{dx} &=2x y & \frac{db}{da} &=\frac{1}{2}a^{-1/2} \end{align}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{da}{dx}\cdot\frac{db}{da} = \left(2x\right)\left(\frac{1}{2}a^{-1/2}\right) = xa^{-1/2} = x(x^2+1)^{-1/2} = \frac{x}{\sqrt{x^2+1}}}