MediaWiki API result

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "batchcomplete": "",
    "continue": {
        "lecontinue": "20230330215425|553",
        "continue": "-||"
    },
    "query": {
        "logevents": [
            {
                "logid": 563,
                "ns": 0,
                "title": "MV Calculus",
                "pageid": 427,
                "logpage": 427,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Dvaezazizi@laalliance.org",
                "timestamp": "2023-06-21T15:42:20Z",
                "comment": "Created page with \"https://youtu.be/-3uMEWZYIKU\""
            },
            {
                "logid": 562,
                "ns": 0,
                "title": "Honors Pre-Calc. 9th",
                "pageid": 426,
                "logpage": 426,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Dvaezazizi@laalliance.org",
                "timestamp": "2023-06-20T01:58:30Z",
                "comment": "Created page with \"1.4: https://www.youtube.com/watch?v=3VbGA0w51lw <br> 1.3: https://www.youtube.com/watch?v=WPUqh73hIDg <br> 1.2: https://www.youtube.com/watch?v=IxTHmzgllFQ <br> 1.1: https://www.youtube.com/watch?v=4-XuHYU6KZw <br>\""
            },
            {
                "logid": 561,
                "ns": 0,
                "title": "Calculus 9th",
                "pageid": 425,
                "logpage": 425,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Dvaezazizi@laalliance.org",
                "timestamp": "2023-06-20T01:56:55Z",
                "comment": "Created page with \"3.10: https://www.youtube.com/watch?v=t7ZqzeX9yE8 3.9: https://www.youtube.com/watch?v=ruwNhGv2pSs\""
            },
            {
                "logid": 560,
                "ns": 0,
                "title": "Videos",
                "pageid": 424,
                "logpage": 424,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Dvaezazizi@laalliance.org",
                "timestamp": "2023-06-20T01:55:06Z",
                "comment": "Created page with \"[[Calculus]] <br> [[Honors Pre-Calc.]] <br>\""
            },
            {
                "logid": 559,
                "ns": 0,
                "title": "2024/G2/15",
                "pageid": 423,
                "logpage": 423,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Aroldog69360@students.laalliance.org",
                "timestamp": "2023-05-03T15:59:35Z",
                "comment": "Created page with \"<math>\\mathbf{3.3}</math><br>  <math> \\lim_{\\theta\\to 0} \\frac{sin(\\theta)}{\\theta} = 1</math><br> <math> \\lim_{\\theta\\to 0} \\frac{cos(\\theta)-1}{\\theta}=0 </math><br> <math> \\frac{d}{dx} [sin(x)] = cos(x) </math><br><br> <math> \\frac{d}{dx} [cos(x)] = -sin(x) </math><br><br> <math> \\frac{d}{dx} [tan(x)] = sec^{2}(x) </math><br><br> <math> \\frac{d}{dx} [csc(x)] = -csc(x) \\cdot cot(x) </math><br><br> <math> \\frac{d}{dx} [sec(x)] = sec(x) \\cdot tan(x) </math><br><br> <math...\""
            },
            {
                "logid": 558,
                "ns": 0,
                "title": "2024/G10/12",
                "pageid": 422,
                "logpage": 422,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Freddys70014@students.laalliance.org",
                "timestamp": "2023-05-02T18:08:49Z",
                "comment": "Created page with \"<math>\\mathbf{Chapter 3 Section 2}</math><br>   <math>{\\frac{d}{dx}} [sin(x)] = cos(x)  \\qquad {\\frac{d}{dx}}[csc(x)]= -csc(x) \\cdot cot(x)</math><br> <math>{\\frac{d}{dx}} [cos(x)] = -sin(x) \\qquad {\\frac{d}{dx}}[sec(x)]= sec(x) \\cdot tan(x)</math> <br> <math>{\\frac{d}{dx}} [tan(x)] = sec^2(x)\\qquad {\\frac{d}{dx}}[cot(x)]= -csc^2(x)dr</math><br> <math>\\mathbf{\\color{Blue}{Examples}}</math><br> <math>\\mathbf{Ex.2}</math><br> <math>f(x)=\\frac{sec(x)}{1+tan(x)}</math><br>\""
            },
            {
                "logid": 557,
                "ns": 0,
                "title": "2024/G1/3",
                "pageid": 420,
                "logpage": 420,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Christophers69344@students.laalliance.org",
                "timestamp": "2023-04-11T16:46:50Z",
                "comment": "Created page with \"==Ch3 Sec2 Review== <math>{\\frac{d}{dx}} [c] = 0 </math> <br> <math>{\\frac{d}{dx}} [c\\cdot f(x)] = c\\cdot{\\frac{d}{dx}} [f(x)] </math> <br>  <math>{\\frac{d}{dx}} [f(x)\\pm g(x)] = {\\frac{d}{dx}} [f(x)] \\pm {\\frac{d}{dx}} [g(x)] </math> <br> <math> {\\frac{d}{dx}} [x^n] = n \\cdot x^n-1 </math> <br> <math>{\\frac{d}{dx}} [a^x] = \\ln(a)a^x </math><br> <math> {\\frac{d}{dx}} [e^x] = e^x </math><br>  ==Ch3 Sec4 ==  ===Point Slope Form=== <math> y - y_1 = m(x - x_1) </math> <br>\""
            },
            {
                "logid": 556,
                "ns": 0,
                "title": "2024/G2/12",
                "pageid": 419,
                "logpage": 419,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Aroldog69360@students.laalliance.org",
                "timestamp": "2023-03-30T22:20:47Z",
                "comment": "Created page with \"<math>\\mathbf{3.1}</math><br> 1. The derivative of a constant is 0 = <math>{\\frac{d}{dx}} [c] = 0 </math> <br> 2. <math>{\\frac{d}{dx}} [x^n] = nx^{n-1} </math> <br><br> 3. <math>{\\frac{d}{dx}} [c\\cdot f(x)] = c \\cdot {\\frac{d} {dx}} [f(x)] </math> <br><br> 4. <math>{\\frac{d}{dx}} [f(x) + g(x)] = {\\frac{d}{dx}} [f(x)] + {\\frac{d}{dx}} [g(x)] </math> <br> <br> 5. <math>{\\frac{d}{dx}} [a^x] = ln (a) \\cdot a^x </math> <br> <br> 6. <math>{\\frac{d}{dx}} [e^x] = e^x </math> <br...\""
            },
            {
                "logid": 555,
                "ns": 0,
                "title": "2024/G8/13",
                "pageid": 418,
                "logpage": 418,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Seths70070@students.laalliance.org",
                "timestamp": "2023-03-30T22:11:49Z",
                "comment": "Created page with \" <math>\\mathbf{Chapter 3 Section 2}</math><br>  Review section 1 <br>  <math>{\\frac{d}{dx}} [c] = 0 </math> <br>  <math>{\\frac{d}{dx}} [c\\cdot f(x)] = c\\cdot{\\frac{d}{dx}} [f(x)] </math> <br>  <math>{\\frac{d}{dx}} [f(x)\\pm g(x)] = {\\frac{d}{dx}} [f(x)] \\pm {\\frac{d}{dx}} [g(x)] </math> <br>  <math>{\\frac{d}{dx}} [a^x] = \\ln(a)a^x </math><br>  <math>{\\frac{d}{dx}} [e^x] = e^x </math><br>   <math>\\color{green}Power\\,Rule </math><br>   <math>{\\frac{d}{dx}} [x^n] = n \\cdot x...\""
            },
            {
                "logid": 554,
                "ns": 0,
                "title": "2024/G8/3",
                "pageid": 417,
                "logpage": 417,
                "params": {},
                "type": "create",
                "action": "create",
                "user": "Seths70070@students.laalliance.org",
                "timestamp": "2023-03-30T22:11:37Z",
                "comment": "Created page with \"[[2024/G8/12|Section 1]]<br> [[2024/G8/13|Section 2]]<br>\""
            }
        ]
    }
}